Journal of Organometallic Chemistry, 421 (1991) 55–64 Elsevier Sequoia S.A., Lausanne JOM 22167

Kohlenwasserstoffverbrückte Komplexe

XXIII *. Heterobimetallische Komplexe mit Ferrocenylund (Ph₃P)(OC)(Cp)FeC(O)CH₂-Gruppen; Darstellung und Struktur von (η^5 -C₅H₅)Fe[η^5 -C₅H₄C(O)Re(CO)₅], (PPh₃)(OC)(Cp)FeC(O)CH₂(η^6 -C₇H₇)M(CO)₃ und [η^5 -C₅H₄C(O)CH₃]Fe[η^5 -C₅H₄C(O)CH₂(η^6 -C₇H₇)M(CO)₃] (M = Cr, Mo)

Josef Breimair, Michael Wieser, Barbara Wagner **, Kurt Polborn ** und Wolfgang Beck *

Institut für Anorganische Chemie der Universität München, Meiserstr. 1, 8000 München 2 (Deutschland) (Eingegangen den 27. Juni 1991)

Abstract

The reactions of the organometallic enolates $[\eta^5-C_5H_4C(O)CH_3]Fe(\eta^5-C_5H_4C(O)CH_2]^-$ and $[Cp(Ph_3P)(OC)FeC(O)CH_2]^-$ with $[(OC)_3M(C_7H_7)]^+$ (M = Cr, Mo) proceed with C-C coupling and give the complexes $(\eta^5-C_5H_4C(O)CH_3)Fe[\eta^5-C_5H_4C(O)CH_2(\eta^6-C_7H_7)M(CO)_3$ (1a,b) and $Cp(Ph_3P)(OC)FeC(O)CH_2(\eta^6-C_7H_7)M(CO)_3$ (2a,b), respectively. $CpFe[\eta^5-C_5H_4C(O)Re(CO)_5]$ (3) is obtained from $CpFe[\eta^5-C_5H_4C(O)CI]$ and $Re(CO)_5^-$. The structures of 1b and 3 have been determined by X-ray diffraction.

Zusammenfassung

Die Reaktionen der metallorganischen Enolate $[\eta^5-C_5H_4C(O)CH_3]Fe[\eta^5-C_5H_4C(O)CH_2]^-$ und $[Cp(Ph_3P)(OC)FeC(O)CH_2]^-$ mit $[(CO)_3M(C_7H_7)]^+$ (M = Cr, Mo) liefern unter C-C-Kopplung die Komplexe $(\eta^5-C_5H_4COCH_3)Fe[\eta^5-C_5H_4C(O)CH_2(\eta^6-C_7H_7)M(CO)_3]$ (1a,b) und $Cp(Ph_3P)(OC)$ FeC(O)CH₂ $(\eta^6-C_7H_7)M(CO)_3$ (2a,b). CpFe $[\eta^5-C_5H_4C(O)Re(CO)_5]$ (3) wird aus CpFe $[\eta^5-C_5H_4C(O)CH_2(\eta^6-C_7H_7)M(CO)_5]^-$ erhalten. Die Strukturen von 1b und 3 wurden röntgenographisch bestimmt.

Im Zuge unserer Arbeiten über Kohlenwasserstoff-verbrückte Komplexe setzten wir als Ausgangsverbindungen auch einige Ferrocenyl-Derivate ein. Eine

^{*} XXII. Mitteilung siehe Lit. 1.

^{**} Röntgenstrukturanalyse.

Reihe von Übergangsmetall-substituierten Ferrocenen wie z.B. $FcMn(CO)_5$ oder $FcC(O)CH_2WCp(CO)_3$ (Fc = Ferrocenyl) sind durch Arbeiten von Nesmeyanov [2] und Herberhold [3] bekannt. Auch einige Ferrocenyl-Metallocenyl-Ketone sind beschrieben [4]. Ferrocenylenolate $FcC(O)CH_2^-$ wurden zur Synthese von Ketophosphanen [5] und heterometallischen Verbindungen [6] eingesetzt. Metallsubstituierte Enolate des Typs $L_nMC(O)CH_2^-$ reagieren mit C-Elektrophilen unter C-C-Verknüpfung [7], sowie mit Metallkationen zu Keten-verbrückten (C,C oder C,O) bimetallischen Komplexen [8], die auch auf anderem Wege zugänglich sind [9]. Wir fanden, daß sich das Ferrocenylenolat 1 an den Cycloheptatrienyl-Liganden des Kations $[(\eta^7-C_7H_7)M(CO)_3]^+$ (M = Cr, Mo) erwartungsgemäß unter C-C-Kupplung [10] und Bildung der heterobimetallischen Komplexe 1 addiert (GI. 1).

Entsprechend setzt sich das Enolat (Ph₃P)(OC)(Cp)FeC(O)CH₂⁻ mit $[(\eta^7 - C_7H_7)M(CO)_3]^+$ (M = Cr, Mo) zu den Verbindungen 2 um (Gl. 2). Das chirale (PPh₃)(OC)(Cp)FeC(O)CH₃ und dessen entsprechendes Enolat wurden in den letzten Jahren von Davies et al. [11] für zahlreiche stereoselektive Reaktionen eingesetzt. Flood et al. berichteten über eine C-C-Kupplung bei der Reaktion von Cp(OC)₂FeCH₂Cl und [Cp(OC)₂Fe(C₂H₄)]⁺ mit Acetylacetonat und Cyclohexanon [12].

Im IR-Spektrum der Verbindungen 1 und 2 sind die ν (CO)-Banden der M(CO)₃- (M = Cr, Mo) und der Fe(CO)-Gruppe sowie die Ketobanden charakteristisch. Die Methylenprotonen von 1 erscheinen im ¹H-NMR-Spektrum als Dublett, in 2 wegen des chiralen Fe-Atoms als Triplett bzw. Doppeldublett.

Im Kristall von 1b (Fig. 1 und Tabellen 1-3) stehen die beiden Substituenten am Ferrocengerüst in 1,2'-Stellung, während im Diacetylferrocen [13] 1,3'-Stellung

vorliegt. Die Cp-Ringe sind planar und beinahe parallel (Winkel zwischen den beiden Ebenen 1.1°). Die substituierte Acetylgruppe ist gegen die Cp-Ebene um 16.6° verdreht. Die Bindungslängen und -winkel in den beiden — C(O)CH₂ — Gruppen von 1b sowie in Diacetylferrocen sind sehr ähnlich. In dem (η^6 -C₇H₇)Mo(CO)₃-Fragment wird wie bie anderen (η^6 -C₇H₇R)Mo(CO)₃-Komplexen (R = H, Re(CO)₅) [14,15] eine Alternanz der C-C-Bindungen gefunden.

Das Ferrocensäurechlorid FeCOCl setzt sich mit Pentacarbonylrhenat(-1) erwartungsgemäß zu 3 um (Gl. 3).

Die entsprechende Manganverbindung wurde von Herberhold auf dem umgepolten Weg aus Lithium-Ferrocenyl und $Mn(CO)_5Br$ und anschließender CO-Insertion erhalten [3]. Die Zweikernkomplexe $(\eta^5-C_5H_5)Fe(\eta^5-C_5H_4(CO)ML_n)$ $(ML_n = FeCp(CO)_2, WCp(CO)_3)$ wurden bereits früher synthetisiert [2]. Diese Verbindungen lassen sich leicht decarbonylieren, was wir mit 3 nicht nachweisen konnten.

Die Verbindung 3 wurde ebenfalls durch eine Röntgenstrukturanalyse charakterisiert (Fig. 2, Tabellen 4 und 5). Im Kristall von 3 sind die Ebenen Re(1)–O(6)– C(9) und C(7)–C(11) um 20.1° gegeneinander verdreht. Die Re–C(6)-Bindung ist im Vergleich zur normalen Re–C- σ -Bindung (z.B. in Re(CO)₅CH₃) [16] etwas verkürzt. Die beiden Cp-Ringe sind planar und annähernd parallel.

Experimenteller Teil

Alle Reaktionen wurden unter Argon mit sorgfältig getrockneten Lösungsmitteln durchgeführt.

$(\eta^{5}-C_{5}H_{4}COMe)Fe[\eta^{5}-C_{5}H_{4}C(O)CH_{2}(\eta^{6}-C_{7}H_{7})Cr(CO)_{3}]$ (1a)

25 mg (0.62 mmol) KH und 150 mg (0.55 mmol) Diacetylferrocen [17] werden in 15 ml THF gelöst. Schon nach wenigen Minuten beginnt unter starker Gasentwicklung ein roter Niederschlag auszufallen. Zur Vervollständigung der Reaktion wird noch 1.5 h bei RT gerührt. Nun wird auf -78 °C abgekühlt und 175 mg (0.55 mmol) $[(\eta^7-C_7H_7)Cr(CO)_3]BF_4$ [18] zugegeben. Man läßt langsam auf RT kommen, rührt weitere 30 min und entfernt dann das Lösungsmittel im Vakuum. Es wird zweimal mit je 10 ml CH₂Cl₂ extrahiert, die CH₂Cl₂-Lösungen werden vereinigt und bis auf 2 ml eingeengt. Diese konzentrierte Lösung wird auf eine Chromatographiesäule (Durchmesser 1 cm, 25 cm lang, Kieselgel, CH₂Cl₂/Ether (2/1)) aufgebracht. Mit einem CH₂Cl₂/Ether-Gemisch (2/1) werden nacheinander zwei rote Zonen eluiert. Während sich die erste Fraktion als 1a erweist, handelt es sich bei der zweiten Fraktion um nicht umgesetztes Diacetylferrocen. Durch Überschichten einer konzentrierten CH₂Cl₂-Lösung von 1a mit Ether

Fig. 1. Struktur von 1b im Kristall.

erhält man im Laufe von 2 Tagen dunkelrote, quaderförmige Kristalle. Ausbeute: 152 mg (56%). IR (Nujol, cm⁻¹): 1982s, 1905s, 1862s, 1662m. ¹H-NMR (90 MHz, CD₂Cl₂): δ 1.94 (d, 2H, COCH₂, J = 6.84 Hz), 2.29 (s, 3H, COCH₃), 3.71 (m, 1H, H(1), C₇H₇), 4.11 (t, 2H, C₇H₇, H(2,7)), 4.48 (t, 4H, C₅H₄COCH₂), 4.63 (t, 2H, C₅H₄COCH₃), 4.72 (t, 2H, C₅H₄COCH₂), 4.98 (m, 2H, C₇H₇, H(3,6)), 6.13 (m, 2H, C₇H₇, H(4,5)) ppm. ¹³C-NMR (CD₂Cl₂, 90 MHz): δ 27.62 (CCH₃), 34.61 (CCH₂), 50.93 (C₇H₇, C(1)), 69.72 (C₇H₇, C(2,7)), 70.67 (C₅H₄COCH₂, C(2,5)), 70.93 (C₅H₄COCH₃, C(2',5')), 73.56 (C₅H₄COCH₂, C(3,4)), 73.73 (C₅H₄COMe, C(3',4'), 80.22 (C₅H₄COH₂, C(1)), 81.04 (C₅H₄COMe, C(1)), 97.42 (C₇H₇, C(3,6)), 101.07 (C₇H₇, C(4,5)), 199.26 (COCH₂), 200.56 (COCH₃) ppm (Gef.: C, 57.20; H, 4.09. C₂₄H₂₀CrFeO₅ ber.: C, 58.10; H, 4.03%. Molmasse 495.85).

$(\eta^{5}-C_{5}H_{4}COMe)Fe[\eta^{5}-C_{5}H_{4}COCH_{2}(\eta^{6}-C_{7}H_{7})Mo(CO)_{3}]$ (1b)

Die Verbindung 1b wird analog zu 1a aus 25 mg KH, 150 mg Diacetylferrocen und 197 mg (0.55 mmol) $[(\eta^7 - C_7 H_7)Mo(CO)_3]BF_4$ synthetisiert. Ausbeute 187 mg (63%). IR (Nujol, cm⁻¹): 1983s, 1906s, 1863s, 1663m. ¹H-NMR (90 MHz, CD₂Cl₂): δ 1.95 (d, 2H, COCH₂, J 6.84 Hz), 2.31 (s, 3H, COCH₃), 3.71 (m, 1H, C₇H₇, H(1)), 4.11 (t, 2H, C₇H₇, H(2,7)), 4.48 (t, 4H, C₅H₄COCH₂, J 1.96 Hz), 4.63 (t, 2H, C₅H₄COCH₃, J 22 Hz), 4.72 (t, 2H, C₅H₄COCH₃, J 2.2 Hz), 4.98 (m, 2H, C₇H₇, H(3,6)), 6.11 (m, 2H, H(4,5), C₇H₇) ppm. ¹³C-NMR (CD₂Cl₂, 90 MHz): δ

Tabelle 1

Kristallographische	Daten von	łb	und 3	8 [21*]
---------------------	-----------	----	-------	--------	---

<u></u>	1b	3
Kristall-Parameter		
Summenformel	C24H20FeMoO5	C ₁₆ H ₉ FeO ₆ Re
Molmasse (g/mol)	539.8	539.2
Kristallgröße (mm)	$0.35 \times 0.35 \times 0.2$	0.5×0.5×0.6
Kristallsystem	monoklin	triklin
Raumgruppe	$P2_1/c$	PĪ
a (pm)	909.26(5)	601.3(2)
b (pm)	1968.06(6)	1155.2(3)
c (pm)	1268.64(8)	1233.5(4)
α(°)	90	107.38(2)
β(°)	107.119(8)	102.64(2)
γ(°)	90	95.41(2)
V (nm ³)	2.13213(4)	0.7861
Ζ	4	2
$\rho_{\rm ber} ({\rm g}{\rm cm}^{-3})$	1.68	2.28
μ (mm ⁻¹)	1.29	87.50
Meßparameter	Nicolet-R3	Enraf-Nonius CAD-4
Meßtemperatur (°)	20	21
Meßbereich 2θ (°)	4–50	4-46
Scanbreite/Untergr. (°)	4-30	
Reziprokes Gitter	$\pm h, \pm k, \pm l$	$\pm h, \pm k, \pm l$
Gemessene Reflexe	7682	2305
Symm. unabh. Reflexe	3725	2177
beobachtet mit $I > 2\sigma(I)$	2989	2139
Strukturlösung und Verfeinerung		
Programme	SHELXS 86	SHELXTL-PLUS
R	0.042	0.038
R _w	0.045	0.035
8	0.0002	0
Verfeinerte Parameter	165	217
Restelektronendichte		
$(e \cdot 10^{-6} \text{ pm}^{-3})$	0.80 / -0.41	1.64 / -2.16
Emp. Absorptionskorrektur		
(min./max. Trans.)	0.094	0.98%/1.01%

* Die Literaturnummer mit einem Sternchen deutet eine Bemerkung in der Literaturliste an.

27.59 (COCH₃), 34.58 (COCH₂), 50.87 (C₇H₇, C(1)), 69.73 (C₇H₇, C(2,7)), 70.63 (C₅H₄COCH₂, C(2,5)), 70.89 (C₅H₄COCH₃, C(2',5')), 73.53 (C₅H₄COCH₂, C(3,4)), 73.72 (C₅H₄COCH₃, C(3',4')), 80.16 (C₅H₄COCH₂, C(1)), 81.0 (C₅H₄COCH₃, C(1)), 97.39 (C₇H₇; C(3)C(6)), 101.07 (C₇H₇; C(4,5)), 199.23 (COCH₂), 200.53 (COCH₃) ppm. (Gef.: C, 53.78; H, 3.70. C₂₄H₂₀FeMoO₅ ber.: C, 53.25; H, 3.89%. Molmasse 539.79).

$(Ph_3P)(OC)(Cp)FeC(O)CH_2(\eta^6-C_7H_7)Cr(CO)_3$ (2a)

200 mg (0.44 mmol) (Ph₃P)(OC)(Cp)FeC(O)CH₃ [17] werden in 15 ml THF gelöst. Bei -78 °C werden 0.3 ml (0.48 mmol) LiⁿBu (1.6 *M* Lösung in Hexan)

Atom	x	y	z	U _{eg} ^a
Мо	2409(1)	1453(1)	790(1)	45(1)
Fe	- 2686(1)	1410(1)	-5658(1)	44(1)
C(1)	3251(4)	2316(3)	1478(7)	64(2)
O(1)	3789(3)	2795(2)	1918(6)	97(2)
C(2)	3056(4)	1139(3)	2908(6)	64(2)
O(2)	3440(4)	966(2)	4172(5)	99(2)
C(3)	3698(5)	1091(3)	224(7)	69(2)
O(3)	4408(3)	860(3)	- 153(6)	111(2)
C(4)	1481(4)	1593(2)	- 1963(5)	52(1)
C(5)	1071(4)	2051(3)	- 1129(5)	54(1)
C(6)	617(4)	1907(3)	96(6)	59(1)
C(7)	592(4)	1273(3)	818(6)	61(1)
C(8)	1019(4)	626(3)	500(6)	54(1)
C(9)	1465(4)	469(2)	-651(5)	51(1)
C(10)	1204(3)	829(2)	- 2194(5)	47(1)
C(11)	18(3)	674(2)	- 3179(5)	46(1)
C(12)	- 268(3)	946(2)	-4795(5)	43(1)
O(4)	412(3)	1252(2)	- 5278(4)	62(1)
C(13)	- 1399(3)	831(2)	- 5820(5)	45(1)
C(14)	- 1861(4)	1198(3)	- 7227(6)	54(1)
C(15)	- 2969(5)	987(3)	- 7829(7)	65(1)
C(16)	- 3197(5)	496(3)	- 6808(6)	65(1)
C(17)	- 2228(4)	405(2)	- 5551(6)	53(1)
C(18)	- 2130(4)	2033(2)	- 3780(5)	47(1)
C(19)	- 2476(4)	2448(3)	- 5117(6)	55(1)
C(20)	- 3597(4)	2306(2)	- 5860(6)	57(1)
C(21)	- 3965(4)	1803(3)	- 4988(6)	55(1)
C(22)	- 3051(4)	1632(2)	-3676(5)	47(1)
C(23)	- 3019(4)	1087(2)	-2529(6)	51(1)
O(5)	- 2164(3)	979(2)	- 1515(4)	67(1)
C(24)	- 4035(4)	686(3)	- 2640(7)	76(2)

Atomkoordinaten ($\times 10^4$) und äquivalente isotrope thermische Parameter (pm² $\times 10^{-1}$) von 1b

^a Äquivalente isotrope U berechnet als ein Drittel der Spur des orthogonalen U_{ii}-Tensors.

langsam zugetropft. Die gelbe Lösung färbt sich dabei sofort rot. Nach 0.5 h Rühren bei -78 °C werden 138 mg (0.44 mmol) $[(\eta^7-C_7H_7)Cr(CO)_3]BF_4$ [16] zugegeben. Die Farbe schlägt langsam nach dunkelbraun um. Man läßt auf Raumtemperatur kommen und entfernt dann das Lösungsmittel im Vakuum. Die zurückbleibende, ölige, dunkelbraune Substanz wird 2-mal mit je 10 ml CH₂Cl₂ extrahiert und bis auf etwa 3 ml eingeengt. Zur Reinigung wird diese Lösung auf eine Chromatographiesäule (Durchmesser 1 cm, 25 cm lang, Kieselgel, CH₂Cl₂) aufgebracht. Mit CH₂Cl₂ eluiert man nacheinander eine rasch wandernde gelbe Zone und eine orange Zone. Bei der zweiten Fraktion handelt es sich um das Produkt, ein orangebraunes Pulver.

Ausbeute: 81 mg (25.3%). IR (Nujol, cm⁻¹): 1982vs, 1906vs, 1869s, 1595m. ¹H-NMR (90 MHz, CD₂Cl₂): δ 1.85 (dd, 2H, COCH₂), 2.94 (m, 1H, H(1), C₇H₇), 3.39 (t, 1H, H(2), C₇H₂), 3.68 (t, 1H, H(7), C₇H₇), 4.31 (d, 5H, C₅H₅), 4.57 (m, 2H, H(3,6), C₇H₇), 5.93 (m, 2H, H(4,5), C₇H₇), 7.37–7.53 (m, 15H, PPh₃) ppm. ¹³C-NMR (90 MHz, CD₂Cl₂): δ 32.86 (COCH₂), 68.59 (C₇H₇, C(2)), 70.18

Tabelle 2

Tabelle 3		
Ausgewählte Bi	indungsabstände (pm) und	-winkel (°) von 1b

$\overline{C(4)-C(10)}$	151.9(6)	C(11)-C(12)	150.2(6)
C(4)-C(5)	136.5(7)	C(12)-O(4)	122.9(6)
C(5)-C(6)	142.4(8)	C(12)-C(13)	147.9(5)
C(6)-C(7)	139.4(7)	C(22)-C(23)	147.4(7)
C(7)-C(8)	142.7(7)	C(23)-O(5)	121.8(5)
C(8)-C(9)	136.3(8)	C(23)-C(24)	148.2(8)
C(9)-C(10)	151.3(6)	C(19)-C(20)	141.0(6)
C(10)-C(11)	153.7(5)	C(14)-C(15)	141.1(7)
Mo-C(4)	244.8(4)	Fe-C(19)	206.5(5)
Mo-C(5)	234.9(4)	Fe-C(16)	205.9(5)
C(11)-C(12)-O(4)	121.7(4)	C(9)-C(10)-C(11)	111.1(4)
C(11)-C(12)-C(13)	118.3(4)	C(4)-C(10)-C(11)	114.6(4)
C(13)-C(12)-O(4)	120.0(4)	C(4)-C(10)-C(9)	109.9(4)
C(22)-C(23)-O(5)	119.4(4)	C(10)-C(11)-C(12)	114.5(4)
C(24)-C(23)-O(5)	121.7(5)	C(12)-C(13)-C(14)	123.7(4)
C(22)-C(23)-C(24)	118.9(4)	C(12)-C(13)-C(17)	127.7(4)

 $(C_7H_7, C(7))$, 85.40 (C_5H_5) , 98.14 $(C_7H_7, C(3))$, 98.24 $(C_7H_7, C(6))$, 98.60 $(C_7H_7, C(4))$, 99.25 $(C_7H_7, C(5))$, 128.24 (d, PPh₃, *meta*), 129.94 (d, PPh₃, *para*), 133.45 (d, PPh₃, *ortho*), 136.58 (d, PPh₃, *ipso*) ppm. ³¹P-NMR (270 MHz, CH₂Cl₂): δ 75.45 (s, PPh₃) ppm. (Gef.: C, 61.25; H, 4.47. $C_{36}H_{29}$ CrFePO₅ ber.: C, 62.22; H, 4.29%. Molmasse 680.34).

Fig. 2. Struktur von 3 im Kristall.

Atom	x	у	Z	U _{eo} ^a
Re(1)	3502(1)	- 710(1)	7143(1)	32(1)
Fe(1)	2019(3)	-4411(2)	8131(1)	35(1)
O(1)	7447(13)	- 105(8)	9468(7)	54(4)
O(2)	1157(16)	1337(8)	8478(8)	66(4)
O(2)	- 906(16)	- 1349(9)	5042(8)	68(4)
O(3)	6365(17)	1056(10)	6783(8)	82(5)
O(4)	5057(15)	- 3064(0)	5718(7)	65(4)
0(5)	5057(15) 651(12)	-1971(7)	7699(7)	40(4)
C(1)	-0.1(12)	- 10/1(/)	7000(7) 9604(11)	47(4)
(1)	0003(20)	- 338(10)	0004(11) 9019(0)	41(5)
(12)	20/1(18)	037(10)	8018(9)	30(4)
C(3)	749(22)	- 1100(11)	5784(11)	46(5)
C(4)	5312(20)	399(12)	6590(10)	49(5)
C(5)	4575(18)	-2184(12)	6263(9)	40(5)
C(6)	1422(17)	- 1863(10)	7829(9)	35(5)
C(7)	4924(19)	- 3623(11)	9495(9)	46(5)
C(8)	4700(17)	- 2990(10)	8683(9)	37(5)
C(9)	2499(17)	- 2567(10)	8597(8)	34(4)
C(10)	1366(19)	-2978(10)	9354(9)	42(5)
<u>α</u> (1))	2904(21)	-3608(11)	9918(9)	51(5)
$\alpha(12)$	2292(22)	- 6161(12)	7270(11)	56(6)
C(13)	337(22)	-6172(12)	7728(11)	58(6)
C(13)	1004(21)	-5452(14)	7767(12)	71(7)
C(14)	- 1094(21)	- 3432(14)	(202(12)	(1(7)
	- 39(24)	- 5010(15)	0455(11)	0/(7)
C(16)	2086(24)	- 5460(13)	6514(11)	64(6)

Atomkoordinaten ($\times 10^{4}$) und äquivalente	isotrope	thermische	Parameter ($pm^2 \times 10^{-1}$) von 3
-------------------	-----------------	-------------------	----------	------------	-------------	-----------------------	---------

^{*a*} Äquivalente isotrope U berechnet als ein Drittel der Spur des orthogonalen U_{ij} Tensors.

$(Ph_3P)(OC)(Cp)FeC(O)CH_2(\eta^6-C_7H_7)Mo(CO)_3$ (2b)

Die Verbindung 2b wird analog zu 2a aus 200 mg (0.44 mmol) (Ph₃P)(OC)(Cp)FeC(O)CH₃ [19], 0.3 ml (0.48 mmol) LiⁿBu (1.6 *M* Lösung in Hexan) und 157 mg (0.44 mmol) $[(\eta^7-C_7H_7)Mo(CO)_3]BF_4$ [16] hergestellt. Das Produkt ist ein braunes Pulver. Ausbeute: 96 mg (29.9%). ¹H-NMR (90 MHz, CD₂Cl₂): δ 2.13 (dd, 2H, COCH₂), 3.06 (m, 1H, H(1), C₇H₇), 3.66 (t, 1H, C(7),

Tabelle 5

Ausgewählte Bindungsabstände (pm) und -winkel (°) von 3

	and the second			
Re(1)-C(1)	200.4(11)	Fe(1)-C(12)	202.6(12)	
Re(1)-C(4)	196.9(14)	Fe(1)-C(13)	204.9(13)	
Re(1)-C(6)	220.8(12)	Fe(1)-C(14)	200.6(11)	
Fe(1) - C(7)	205.2(9)	Fe(1)-C(15)	203.6(11)	
Fe(1)-C(8)	202.7(10)	C(6)-O(6)	121.9(13)	
Fe(1)-C(9)	200.8(11)	C(6)-C(9)	150.7(17)	
Fe(1)-C(10)	201.4(11)	C(8)-C(9)	144.7(15)	
Fe(1)-C(11)	204.3(10)	C(9)-C(10)	143.0(18)	
Fe(1)-C(6)-O(6)	120.9(9)	C(6)-C(9)-C(10)	123.1(10)	
Re(1)-C(6)-C(9)	122.4(7)	C(6)-C(9)-C(8)	128.6(11)	
C(9)-C(6)-O(6)	116.4(11)	C(8)-C(9)-C(10)	108.2(10)	
C(4) - Re(1) - C(6)	176.8(4)	C(9)-C(10)-C(11)	106.5(10)	

Tabelle 4

 $C_{7}H_{7}$), 3.95 (t, 1H, C(2), $C_{7}H_{7}$), 4.34 (d, 5H, $C_{5}H_{5}$), 4.71 (m, 2H, H(3,6), $C_{7}H_{7}$), 6.02 (m, 2H, C(4,5), $C_{7}H_{7}$), 7.37–7.51 (m, 15H, PPh₃) ppm. ¹³C-NMR (90 MHz, CD₂Cl₂): δ 36.11 (COCH₂), 71.61 ($C_{7}H_{7}$, C(2)), 73.04 ($C_{7}H_{7}$, C(7)), 85.43 ($C_{5}H_{5}$), 97.27 ($C_{7}H_{7}$, C(3)), 97.36 ($C_{7}H_{7}$, C(6)), 100.39 ($C_{7}H_{7}$, C(4)), 101.01 ($C_{7}H_{7}$, C(5)), 128.25 (d, PPh₃, *meta*), 129.96 (d, PPh₃, *para*), 133.29 (d, PPh₃, *ortho*), 136.56 (d, PPh₃, *ipso*) ppm. ³¹P-NMR (270 MHz, CH₂Cl₂): δ 75.45 ppm. (Gef.: C, 58.74; H, 4.39. $C_{36}H_{29}$ FeMoPO₅ ber.: C, 59.44; H, 4.02%. Molmasse 727.38).

$(\eta^{5}-C_{5}H_{5})Fe[\eta^{5}-C_{5}H_{4}C(O)Re(CO)_{5}]$ (3)

118 mg (0.47 mmol) Ferrocensäurechlorid FeCOCI [20] werden in 10 ml THF gelöst und auf -78°C abgekühlt. Zu dieser Lösung gibt man die orange THF-Lösung (10 ml) von Na[Re(CO)₅]L; die aus 238 mg (0.36 mmol) Re₂(CO)₁₀ durch Natriumamalgam-Reduktion synthetisiert wurde. Es wird nun langsam auf Raumtemperatur erwärmt und anschließend weitere 45 min gerührt. Es wird vom Lösungsmittel befreit und mit 15 ml CH₂Cl₂ extrahiert. Die CH₂Cl₂-Lösung wird bis auf 2 ml eingeengt und auf eine mit Al₂O₃/CH₃CN gefüllte Chromatographiesäule aufgebracht (Al₂O₃ neutral, Aktivitätsstufe 1, Merck). Durch Eluieren mit Acetonitril erhält man eine rote Fraktion, die nach dem Abziehen des CH₃CN im Vakuum nochmal mit 10 ml Pentan gewaschen wird. 3 fällt hierbei als rosafarbenes Pulver an. Durch Umkristallisieren aus CH₂Cl₂ bei tiefen Temperaturen (-20°C) werden rote quaderförmige Kristalle erhalten. Ausbeute: 190 mg (75%). IR (Nujol, cm⁻¹): 2134m, 2033s, 2012s, 1979vs, 1572m, 1543m. ¹H-NMR (90 MHz, CD₂Cl₂): δ 4.22 (s, 5H, Cp), 4.48 (t, 2H, H(3,4), 4.61 (t, 2H, H(2-5), J 1.95 Hz) ppm. ¹³C-NMR (90 MHz, CD₂Cl₂): δ 69.47 (C₅H₅), 69.85 (C(2),C(5)), 71.22 (C(2)-C(5)), 99.38 (C(1)), 181.57 (Re-CO_{ax}), 183.88 (Re-CO_{aa}) ppm. (Gef.: C, 34.06; H, 1.73. C₁₆H₉FeO₆Re ber.: C, 35.64; H, 1.67%. Molmasse 539.21).

Dank

Der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie gilt unser herzlicher Dank für großzügige Förderung.

Literatur und Bemerkungen

- 1 J. Breimair, T. Weidmann, B. Wagner und W. Beck, Chem. Ber., im Druck.
- 2 A.N. Nesmeyanov, L.G. Makarova und V.N. Vinogradov, Izv. Akad. Nauk. SSSR Ser. Khim., 12 (1973) 2796; K.H. Pannell, J.B. Cassias, G.M. Crawford und A. Flores, Inorg. Chem., 15 (1976) 2671; A.N. Nesmeyanov, E.G. Perevalova, L.I. Leontyeva und S.A. Yeremin, Dokl. Ak. Nauk. SSSR, 243 (1978) 1208.
- 3 M. Herberhold und H. Kniesel, J. Organomet. Chem., 334 (1987) 347; M. Herberhold, H. Kniesel, L. Haumaier, A. Gieren und C. Rinz-Perez, Z. Naturforsch. B, 41 (1986) 1431; M. Herberhold, W. Feger und U. Thewalt, Z. Naturforsch. B, 45 (1990) 447.
- 4 M. Cais und M. Feldkirch, Tetrahedron Lett., (1961) 440; M.O. Rausch, E.O. Fischer und H. Grubert, J. Am. Chem. Soc., 82 (1960) 76; J. Trotter und A.C. MacDonald, Acta Crystallogr., 21 (1966) 359; G.J. Small und J. Trotter, Can. Chem., 42 (1964) 1746; J.-P. Wang, J.-M. Hwu und S.-L. Wang, J. Organomet. Chem., 371 (1989) 71; J.-P. Wang und J.-M. Hwu, J. Organomet. Chem., 399 (1990) 141.
- 5 P. Braunstein, T.M. Gomes Carneiro und D. Matt, J. Organomet. Chem., 367 (1989) 117.
- 6 C. Floriani und P. Veya, The Enolates as an Organotransition Bimetallic Species to the Reactivity versus Electrophiles, Herbstversammlung der Schweizer Chem. Gesellschaft, Bern 1989.

- 7 G. Bashiardes, St.P. Collingwood, St.G. Davies und S.C. Preston, J. Organomet. Chem., 364 (1989) C29.
- 8 I. Weinstock, C. Floriani, A. Chiesi-Villa und C. Guastini, J. Am. Chem. Soc., 108 (1986) 8298.
- 9 M. Akita, A. Kondoh, T. Kawahara, T. Takagi und Y. Moro-oka, Organometallics, 7 (1988) 366.
- 10 R. Gompper und H.-U. Wagner, Angew. Chem., 88 (1976) 389.
- 11 S.G. Davies, Aldrichim. Acta, 23 (1990) 31 und dort zitierte Literatur; S.G. Davies, A.E. Derome und J.P. McNally, J. Am. Chem. Soc., 113 (1991) 2854.
- 12 J.E. Jensen, L.C. Campbell, S. Nakanishi und Th.C. Flood, J. Organomet. Chem., 244 (1983) 61.
- 13 G.J. Palenik, Inorg. Chem., 9 (1970) 2424.
- 14 J.O. Dunitz und P. Pauling, Helv. Chim. Acta, 43 (1960) 2188.
- 15 H.J. Müller, U. Nagel, M. Steimann, K. Polborn und W. Beck, Chem. Ber., 122 (1989) 1387.
- 16 D.W.H. Rankin und A. Robertson, J. Organomet. Chem., 105 (1976) 331.
- 17 M. Rosenblum und R.B. Woodward, J. Am. Chem. Soc., 80 (1958) 5443.
- 18 J.D. Munro und P.L. Pauson, J. Chem. Soc., (1961) 3475; R.B. King und M.B. Bisnette, Inorg. Chem., 3 (1964) 785; A. Salzer und H. Werner, Z. Anorg. Allg. Chem., 418 (1975) 88.
- 19 J.P. Bibler und A. Wojcicki, Inorg. Chem., 5 (1966) 889.
- 20 H.J. Lorkowski, R. Pannier und A. Wende, J. Prakt. Chem., 35 (1967) 149.
- 21 Kristalle von 1b durch Überschichten einer gesättigten CH₂Cl₂-Lösung mit Ether, von 3 durch Kühlen einer gesättigten CH₂Cl₂-Lösung auf -25°C. Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlichtechnische Information mbH, W-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-55473, der Autorennamen und des Zeitschiftenzitats angefordert werden.